Kaleidoscope: 实现解析器和抽象语法树

原文:Kaleidoscope: Implementing a Parser and AST

介绍 “”

欢迎来到第二章教程,这一章介绍如何使用词法分析器来建立一个Kaleidoscope语言解析器。一旦我们完成了解析器,我们可以定义抽象语法树(AST)。

我们的解析器将使用递归下降法和运算符优先级分析来解析Kaleidoscope语言(后者用来解析运算符表达式,前者将负责其他部分所有的解析)。在我们开始解析之前,我们先来讨论一下我们这一步的目标:生成抽象语法树。

抽象语法树(AST)

一段程序的抽象语法树很容易在接下来的阶段编译器(比如:代码生成阶段)翻译成机器码。我们通常喜欢用一种对象来构建语言,毫无疑问,抽象语法树是最贴近我们要求的模型。在Kaleidoscope中,我们有表达式,原型,函数对象,我们先从生成表达式的AST先:

/// ExprAST - Base class for all expression nodes.
    class ExprAST {
    public:
      virtual ~ExprAST() {}
    };

    /// NumberExprAST - Expression class for numeric literals like "1.0".
    class NumberExprAST : public ExprAST {
      double Val;
    public:
      NumberExprAST(double val) : Val(val) {}
    };

上面的代码展示了语法树节点的基类和由此继承出的数字节点子类NumberExprAST。需要注意的是,NumberExprAST会将解析出的文本转化为数字并存储起来,以便今后的编译器处理中可以获得这个节点存储的值。

现在我们只生成了AST,还没有对他们的访问方法。不过我们可以轻易地添加成员函数来实现这些访问方法,以下是Kaleidoscope中其他的AST节点的定义:

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
  std::string Name;
public:
  VariableExprAST(const std::string &name) : Name(name) {}
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
  char Op;
  ExprAST *LHS, *RHS;
public:
  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
    : Op(op), LHS(lhs), RHS(rhs) {}
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
  std::string Callee;
  std::vector<ExprAST*> Args;
public:
  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    : Callee(callee), Args(args) {}
};

这些代码相当直观:变量节点记录变量名,二元运算符节点记录运算符(如’+’),函数调用节点记录调用的函数名和函数参数列表。这样的结构相当不错,我们的AST结构记录的信息是与语法是无关的,没有涉及到运算符的优先级和词法结构。

在我们基本的语言里,以上定义了我们表达式节点所有的AST节点类型。因为我们的语言中没有定义条件控制语法(如if/else),所以这并没有做到图灵完备;我们将在后面慢慢修复它。我们现在需要做两件事情,一件是实现在Kaleidoscope中调用函数,另一件是记录函数体的本身。

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
  std::string Name;
  std::vector<std::string> Args;
public:
  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
    : Name(name), Args(args) {}
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
  PrototypeAST *Proto;
  ExprAST *Body;
public:
  FunctionAST(PrototypeAST *proto, ExprAST *body)
    : Proto(proto), Body(body) {}
};

在Kaleidoscope中,函数调用需要带有传入的参数。因为目前所有的变量都当做浮点类型,我们并不需要记录参数类型。在现代计算机语言语言中,ExprAST类应当有一个记录类型的变量。

建立了这些类型后,我们可以开始着手解析这些表达式和函数体了。

解析基础

现在我们要开始建立抽象语法树了。我们先试着解析x+y这样的表达式,这可以由这样的调用产生。

ExprAST *X = new VariableExprAST("x");
ExprAST *Y = new VariableExprAST("y");
ExprAST *Result = new BinaryExprAST('+', X, Y);

为了达到上面的目的,我们现在还需要以下的辅助函数

/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
/// token the parser is looking at.  getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() {
  return CurTok = gettok();
}

以上实现了一个简单的token缓存,这使得我们可以向前读取下一个token,每一个解析器的函数将默认CurTok是当前正在被解析的token。

/// Error* - These are little helper functions for error handling.
    ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }

错误处理函数将用来处理简单的错误。我们的解析器的错误恢复并不是最好的,也不是特别的方便,但对于我们的教程来说已经够了。这些程序可以让我们更容易地处理不同的返回类型程序的错误,在一般情况下一般返回NULL

具备好了这些基础的辅助函数,我们可以实现我们的第一个语法:解析数字。

基本表达式解析

我们先从数字开始,因为它们是最容易处理的。首先,我们先定义一个处理数字的函数:

/// numberexpr ::= number
static ExprAST *ParseNumberExpr() {
  ExprAST *Result = new NumberExprAST(NumVal);
  getNextToken(); // consume the number
  return Result;
}

这一部分代码很简单:若当前的token是一个指向数字的tok_number,则调用ParseNumberExpr,它会读取当前数值,创建NumberExprAST节点,然后读取下一token,以便接下来的解析,最后,返回结果。

这其中还有一些有趣的东西。最重要的一点是,这些解析节点的代码会将所有与之相关的token都读取掉,同时在返回结果前会再次调用getNextToken来清除掉当前的token,得到下一个token(通常这个token不属于当前节点)。这在递归下降解析器中是一个普遍的做法。下面给出一个例子可以更好地理解,这个例子是关于解析一对括号的:

/// parenexpr ::= '(' expression ')'
static ExprAST *ParseParenExpr() {
  getNextToken();  // eat (.
  ExprAST *V = ParseExpression();
  if (!V) return 0;

  if (CurTok != ')')
    return Error("expected ')'");
  getNextToken();  // eat ).
  return V;
}

这个函数演示了几个关于解析器的有趣的方面:

  • 异常检测:当被调用时,这个函数会默认当前的token是(,但是当结束表达式解析后,有可能末尾的token就不是)。比如,如果用户错将(4)打成了(4 *,解析器就会检测到这个错误,为了提醒有错误发生,我们的解析器将返回NULL。
  • 递归式解析:这段函数中调用了ParseExpression(我们将很快看到ParseExpression同样会调用ParseParenExpr)。这种方式相当强大,因为它允许我们处理嵌套的语法,同时也保持了每一个过程都是相当简洁。注意,括号并不会成为抽象语法树的组成部分,它的作用是将表达式组合起来引导引导解析器正确地处理它们。当建立好了抽象语法树后,它们便可以被抛弃了。

下一步我们来写变量的解析器:

/// identifierexpr
///   ::= identifier
///   ::= identifier '(' expression* ')'
static ExprAST *ParseIdentifierExpr() {
  std::string IdName = IdentifierStr;

  getNextToken();  // eat identifier.

  if (CurTok != '(') // Simple variable ref.
    return new VariableExprAST(IdName);

  // Call.
  getNextToken();  // eat (
  std::vector<ExprAST*> Args;
  if (CurTok != ')') {
    while (1) {
      ExprAST *Arg = ParseExpression();
      if (!Arg) return 0;
      Args.push_back(Arg);

      if (CurTok == ')') break;

      if (CurTok != ',')
        return Error("Expected ')' or ',' in argument list");
      getNextToken();
    }
  }

  // Eat the ')'.
  getNextToken();

  return new CallExprAST(IdName, Args);
}

这段解析代码和其它的很类似。若当前token为tok_identifier时,该函数被调用。同样具有递归的解析思想,和同样的错误处理方法。有趣的一点是,这里还用到了一个前置判断(look-ahead)来决定当前的identifier是一个函数调用,还是一个变量。判断的方法是读取下一个token,若下一个token**不是**(,则这是函数调用这时候返回VariableExprAST,否则是使用变量,返回CallExprAST

现在我们所有的简单表达式解析器代码已经就位,我们可以定义一个辅助函数来包装并调用它们。我们把目前我们完成的简单的表达式取名为**基本表达式**(primary expressions),到后面你就会更加理解这个名字了。以下就是基本表达式解析器:

/// primary
    ///   ::= identifierexpr
    ///   ::= numberexpr
    ///   ::= parenexpr
    static ExprAST *ParsePrimary() {
      switch (CurTok) {
      default: return Error("unknown token when expecting an expression");
      case tok_identifier: return ParseIdentifierExpr();
      case tok_number:     return ParseNumberExpr();
      case '(':            return ParseParenExpr();
      }
    }

通过基本表达式解析器,我们可以明白为什么我们要使用CurTok了,这里用了前置判断来选择并调用解析器。

现在基本的表达式解析器已经完成了,我们下一步开始处理二元表达式,这会有一点复杂。

二元表达式解析

二元表达式的解析过程相对复杂,因为二元表达式会有二义性。比如,当出现x+y*z,解析器可以选择(x+y)*z或者x+(y*z)两种解析顺序。在数学定义中,我们期望后一种解析方式,因为*+有更高的优先级。

面对优先级问题,我们可用的处理方法有很多,不过论最优雅最高效的还是要数远算符优先级分析法(Operator-Precedence Parsing)。这种解析方法借助运算符优先级来选择解析顺序,所以,起初需要一个一个优先级表格:

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
  if (!isascii(CurTok))
    return -1;

  // Make sure it's a declared binop.
  int TokPrec = BinopPrecedence[CurTok];
  if (TokPrec <= 0) return -1;
  return TokPrec;
}

int main() {
  // Install standard binary operators.
  // 1 is lowest precedence.
  BinopPrecedence['<'] = 10;
  BinopPrecedence['+'] = 20;
  BinopPrecedence['-'] = 20;
  BinopPrecedence['*'] = 40;  // highest.
  ...
}

现在我们可以开始着手解析二元表达式了,最核心的思想方法是将可能出现二义性的表达式分解成多个部分。想一下,比如表达式a+b+(c+d)*e*f+g。解析器将这个字符串看做一串由二元运算符分隔的基本表达式。因此,它将先解析第一个基本表达式a,接着将解析到成对出现的[+, b] [+, (c+d)] [, e] [, f]和 [+, g]。因为括号也是基础表达式,不用担心解析器会对``(c+d)``出现困惑。

开始解析第一步,表达式是由第一个基础表达式和之后的一连串[运算符, 基础表达式]组成。

/// expression
///   ::= primary binoprhs
///
static ExprAST *ParseExpression() {
  ExprAST *LHS = ParsePrimary();
  if (!LHS) return 0;

  return ParseBinOpRHS(0, LHS);
}

ParseBinOpRHS是为我们解析*运算符-表达式*对的函数。它记录优先级和已解析部分的指针。

优先级数值被传入ParseBinOpRHS,凡是比这个优先级值低的运算符都不能被使用。比如如果当前的解析的是[+, x],且目前传入的优先级值为40,那么函数就不会消耗任何token(因为”+”优先级值仅20)。因此我们函数应该这样写:

/// binoprhs
    ///   ::= ('+' primary)*
    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
      // If this is a binop, find its precedence.
      while (1) {
        int TokPrec = GetTokPrecedence();

        // If this is a binop that binds at least as tightly as the current binop,
        // consume it, otherwise we are done.
        if (TokPrec < ExprPrec)
          return LHS;

这部分代码获取了当前的token的优先级值,与传入的优先级进行比较。若当前的token已经不是运算符时,我们会获得一个无效的优先级值-1,它比任何一个运算符的优先级都小,我们可以借助它来获知二元表达式已经结束。若当前的token是运算符,我们继续:

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken();  // eat binop

// Parse the primary expression after the binary operator.
ExprAST *RHS = ParsePrimary();
if (!RHS) return 0;

就这样,这段代码消耗了(并记住了)二元运算符然后解析接下来的基本表达式。我们用[+, b]以及后续的运算符-表达式对作为示例来完成接下来的代码。

现在我们已知左侧的表达式和右侧的一组运算符-表达式对,我们必须决定用他们的关系是什么。比如我们可能会遇到”(a + b) 未知运算符”或者”a + (b 未知运算符)”这样的关系。为了决定这个关系,我们要依靠下一个运算符并与当前运算符优先级(在这个例子中是”+”)进行比较:

// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

如果右侧的运算符优先级小于等于当前的运算符,我们就可以知道当前运算符的顺序是”(a + b) 运算符 ...”。在我们例子里,当前的运算符是”+”且下一个运算符是”+”,我们知道他们的优先级是一样的。因此,我们为”a + b”创建AST节点,接着,继续解析:

  ... if body omitted ...
    }

    // Merge LHS/RHS.
    LHS = new BinaryExprAST(BinOp, LHS, RHS);
  }  // loop around to the top of the while loop.
}

在我们上面的例子里,将会将”a + b +”作为”a + b”并且进入下一个循环,处理下一个”+”。这些代码将消耗,记录,并将”(c + d)”作为基本表达式进行解析,即解析[+, (c + d)]。这时将进入上方的``if``语句,并比较”+”和”*”的优先级,因为这里的”*”优先级高于”+”,所以if语句将进入true分支。

现在一个关键的问题来了,那就是“上方的if语句如何完整解析剩余部分”?我们继续用上面的例子建立正确的AST树,所以我们需要得到右侧“(c + d) * e * f”表达式的指针。这部分代码相当简单(上面代码if的部分):

// If BinOp binds less tightly with RHS than the operator after RHS, let
    // the pending operator take RHS as its LHS.
    int NextPrec = GetTokPrecedence();
    if (TokPrec < NextPrec) {
      RHS = ParseBinOpRHS(TokPrec+1, RHS);
      if (RHS == 0) return 0;
    }
    // Merge LHS/RHS.
    LHS = new BinaryExprAST(BinOp, LHS, RHS);
  }  // loop around to the top of the while loop.
}

至此,我们知道右侧的二元运算符优先级应当高于当前的运算符。所以,任意拥有比“+”更高优先级的运算符-表达式对应当作为RHS变量返回。因此我们递归调用ParseBinOpRHS函数,并特别地将当前的优先级值加一,即”TokPrec + 1”。在我们以上的例子中,“(c+d)*e*f”将作为AST节点返回到RHS

最后,在最后一个循环中解析完毕”+ g”部分。至此,我们用这一点点代码(14行不记空行和注视的代码)成功地以一种优雅的方式解析完了整个二元表达式。由于篇幅有限,也许有一些部分你还存在不解,我希望你能对这些代码多进行一下实验,以便熟悉它的工作原理,扫清困惑。

目前,我们仅仅完成对表达式的解析,下一步我们要进一步完善语法。

其它解析

下一步的目标是处理函数声明。在Kaleidoscope中有两种函数声明方式,一是用”extern”声明外部函数,二是直接声明函数体。实现这部分的代码很简单直接,但是并不那么有趣:

/// prototype
    ///   ::= id '(' id* ')'
    static PrototypeAST *ParsePrototype() {
      if (CurTok != tok_identifier)
        return ErrorP("Expected function name in prototype");

      std::string FnName = IdentifierStr;
      getNextToken();

      if (CurTok != '(')
        return ErrorP("Expected '(' in prototype");

      // Read the list of argument names.
      std::vector<std::string> ArgNames;
      while (getNextToken() == tok_identifier)
        ArgNames.push_back(IdentifierStr);
      if (CurTok != ')')
        return ErrorP("Expected ')' in prototype");

      // success.
      getNextToken();  // eat ')'.

      return new PrototypeAST(FnName, ArgNames);
    }

有了以上,记录一个声明的函数就很简单了——仅仅需要保存一个函数原型和函数体的一串表达式:

/// definition ::= 'def' prototype expression
static FunctionAST *ParseDefinition() {
  getNextToken();  // eat def.
  PrototypeAST *Proto = ParsePrototype();
  if (Proto == 0) return 0;

  if (ExprAST *E = ParseExpression())
    return new FunctionAST(Proto, E);
  return 0;
}

另外,我们也支持”extern”声明外部函数比如”sin”和”cos”或者用户定义的函数。”extern”与上面函数声明的区别仅仅在于没有具体的函数体:

/// external ::= 'extern' prototype
static PrototypeAST *ParseExtern() {
  getNextToken();  // eat extern.
  return ParsePrototype();
}

最后,我们将让用户输入任意的外层表达式(top-level expressions),在运行的同时会计算出表达式结果。为此,我们需要处理无参数函数:

/// toplevelexpr ::= expression
static FunctionAST *ParseTopLevelExpr() {
  if (ExprAST *E = ParseExpression()) {
    // Make an anonymous proto.
    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    return new FunctionAST(Proto, E);
  }
  return 0;
}

现在我们完成了所有的零碎的部分,让我们用一段短小的驱动代码来调用他们吧!

驱动代码

驱动代码功能很简单,即在解析时调用相应的解析函数。其中没有什么有趣的地方,让我们看看这部分的代码:

/// top ::= definition | external | expression | ';'
static void MainLoop() {
  while (1) {
    fprintf(stderr, "ready> ");
    switch (CurTok) {
    case tok_eof:    return;
    case ';':        getNextToken(); break;  // ignore top-level semicolons.
    case tok_def:    HandleDefinition(); break;
    case tok_extern: HandleExtern(); break;
    default:         HandleTopLevelExpression(); break;
    }
  }
}

这里我们忽略了分号。你也许会问,这是为什么呢?最基本的理由是:如果你在命令行输入“4 + 5”,解析器并不知道这个表达式是否结束。比如,你在下一行可能会输入“def foo...”,这时候“4 + 5”是一个完整的表达式;相反地,如果你下一行输入“* 6”,那么上面的表达式还要继续解析。所以,在解析层加入分号的解析,是用来辅助判断输入是否结束。

结论 “”

通过400行的代码(240行有效代码),我们完整地定义了最基本的语言,包括词法分析器,解析器,和AST树工厂。目前,我们的代码可以检测输入的代码是否具有正确的语法,比如,这里有一个简单的输入和输出:

$ ./a.out
ready> def foo(x y) x+foo(y, 4.0);
Parsed a function definition.
ready> def foo(x y) x+y y;
Parsed a function definition.
Parsed a top-level expr
ready> def foo(x y) x+y );
Parsed a function definition.
Error: unknown token when expecting an expression
ready> extern sin(a);
ready> Parsed an extern
ready> ^D
$

目前Kaleidoscope还有很多扩展空间,比如你可以定义新的AST节点,扩展语法等等。在下一章,我们将介绍如何从AST生成LLVM中间代码(Intermediate Representation,简称IR)

完整代码

这里是上一章和这章完整的代码。注意,这里的代码并不依赖任何外部库:你不需要LLVM或者其它外部链接库(当然,除了C和C++的标准库)。编译命令如下:

# Compile
    clang++ -g -O3 toy.cpp
    # Run
    ./a.out

这里是完整代码:

#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <string>
#include <vector>

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
  tok_eof = -1,

  // commands
  tok_def = -2, tok_extern = -3,

  // primary
  tok_identifier = -4, tok_number = -5
};

static std::string IdentifierStr;  // Filled in if tok_identifier
static double NumVal;              // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
  static int LastChar = ' ';

  // Skip any whitespace.
  while (isspace(LastChar))
    LastChar = getchar();

  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    IdentifierStr = LastChar;
    while (isalnum((LastChar = getchar())))
      IdentifierStr += LastChar;

    if (IdentifierStr == "def") return tok_def;
    if (IdentifierStr == "extern") return tok_extern;
    return tok_identifier;
  }

  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    std::string NumStr;
    do {
      NumStr += LastChar;
      LastChar = getchar();
    } while (isdigit(LastChar) || LastChar == '.');

    NumVal = strtod(NumStr.c_str(), 0);
    return tok_number;
  }

  if (LastChar == '#') {
    // Comment until end of line.
    do LastChar = getchar();
    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

    if (LastChar != EOF)
      return gettok();
  }

  // Check for end of file.  Don't eat the EOF.
  if (LastChar == EOF)
    return tok_eof;

  // Otherwise, just return the character as its ascii value.
  int ThisChar = LastChar;
  LastChar = getchar();
  return ThisChar;
}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
  virtual ~ExprAST() {}
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
public:
  NumberExprAST(double val) {}
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
  std::string Name;
public:
  VariableExprAST(const std::string &name) : Name(name) {}
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
public:
  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) {}
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
  std::string Callee;
  std::vector<ExprAST*> Args;
public:
  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    : Callee(callee), Args(args) {}
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
  std::string Name;
  std::vector<std::string> Args;
public:
  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
    : Name(name), Args(args) {}

};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
public:
  FunctionAST(PrototypeAST *proto, ExprAST *body) {}
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
/// token the parser is looking at.  getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() {
  return CurTok = gettok();
}

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
  if (!isascii(CurTok))
    return -1;

  // Make sure it's a declared binop.
  int TokPrec = BinopPrecedence[CurTok];
  if (TokPrec <= 0) return -1;
  return TokPrec;
}

/// Error* - These are little helper functions for error handling.
ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }

static ExprAST *ParseExpression();

/// identifierexpr
///   ::= identifier
///   ::= identifier '(' expression* ')'
static ExprAST *ParseIdentifierExpr() {
  std::string IdName = IdentifierStr;

  getNextToken();  // eat identifier.

  if (CurTok != '(') // Simple variable ref.
    return new VariableExprAST(IdName);

  // Call.
  getNextToken();  // eat (
  std::vector<ExprAST*> Args;
  if (CurTok != ')') {
    while (1) {
      ExprAST *Arg = ParseExpression();
      if (!Arg) return 0;
      Args.push_back(Arg);

      if (CurTok == ')') break;

      if (CurTok != ',')
        return Error("Expected ')' or ',' in argument list");
      getNextToken();
    }
  }

  // Eat the ')'.
  getNextToken();

  return new CallExprAST(IdName, Args);
}

/// numberexpr ::= number
static ExprAST *ParseNumberExpr() {
  ExprAST *Result = new NumberExprAST(NumVal);
  getNextToken(); // consume the number
  return Result;
}

/// parenexpr ::= '(' expression ')'
static ExprAST *ParseParenExpr() {
  getNextToken();  // eat (.
  ExprAST *V = ParseExpression();
  if (!V) return 0;

  if (CurTok != ')')
    return Error("expected ')'");
  getNextToken();  // eat ).
  return V;
}

/// primary
///   ::= identifierexpr
///   ::= numberexpr
///   ::= parenexpr
static ExprAST *ParsePrimary() {
  switch (CurTok) {
  default: return Error("unknown token when expecting an expression");
  case tok_identifier: return ParseIdentifierExpr();
  case tok_number:     return ParseNumberExpr();
  case '(':            return ParseParenExpr();
  }
}

/// binoprhs
///   ::= ('+' primary)*
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
  // If this is a binop, find its precedence.
  while (1) {
    int TokPrec = GetTokPrecedence();

    // If this is a binop that binds at least as tightly as the current binop,
    // consume it, otherwise we are done.
    if (TokPrec < ExprPrec)
      return LHS;

    // Okay, we know this is a binop.
    int BinOp = CurTok;
    getNextToken();  // eat binop

    // Parse the primary expression after the binary operator.
    ExprAST *RHS = ParsePrimary();
    if (!RHS) return 0;

    // If BinOp binds less tightly with RHS than the operator after RHS, let
    // the pending operator take RHS as its LHS.
    int NextPrec = GetTokPrecedence();
    if (TokPrec < NextPrec) {
      RHS = ParseBinOpRHS(TokPrec+1, RHS);
      if (RHS == 0) return 0;
    }

    // Merge LHS/RHS.
    LHS = new BinaryExprAST(BinOp, LHS, RHS);
  }
}

/// expression
///   ::= primary binoprhs
///
static ExprAST *ParseExpression() {
  ExprAST *LHS = ParsePrimary();
  if (!LHS) return 0;

  return ParseBinOpRHS(0, LHS);
}

/// prototype
///   ::= id '(' id* ')'
static PrototypeAST *ParsePrototype() {
  if (CurTok != tok_identifier)
    return ErrorP("Expected function name in prototype");

  std::string FnName = IdentifierStr;
  getNextToken();

  if (CurTok != '(')
    return ErrorP("Expected '(' in prototype");

  std::vector<std::string> ArgNames;
  while (getNextToken() == tok_identifier)
    ArgNames.push_back(IdentifierStr);
  if (CurTok != ')')
    return ErrorP("Expected ')' in prototype");

  // success.
  getNextToken();  // eat ')'.

  return new PrototypeAST(FnName, ArgNames);
}

/// definition ::= 'def' prototype expression
static FunctionAST *ParseDefinition() {
  getNextToken();  // eat def.
  PrototypeAST *Proto = ParsePrototype();
  if (Proto == 0) return 0;

  if (ExprAST *E = ParseExpression())
    return new FunctionAST(Proto, E);
  return 0;
}

/// toplevelexpr ::= expression
static FunctionAST *ParseTopLevelExpr() {
  if (ExprAST *E = ParseExpression()) {
    // Make an anonymous proto.
    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    return new FunctionAST(Proto, E);
  }
  return 0;
}

/// external ::= 'extern' prototype
static PrototypeAST *ParseExtern() {
  getNextToken();  // eat extern.
  return ParsePrototype();
}

//===----------------------------------------------------------------------===//
// Top-Level parsing
//===----------------------------------------------------------------------===//

static void HandleDefinition() {
  if (ParseDefinition()) {
    fprintf(stderr, "Parsed a function definition.\n");
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

static void HandleExtern() {
  if (ParseExtern()) {
    fprintf(stderr, "Parsed an extern\n");
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

static void HandleTopLevelExpression() {
  // Evaluate a top-level expression into an anonymous function.
  if (ParseTopLevelExpr()) {
    fprintf(stderr, "Parsed a top-level expr\n");
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
  while (1) {
    fprintf(stderr, "ready> ");
    switch (CurTok) {
    case tok_eof:    return;
    case ';':        getNextToken(); break;  // ignore top-level semicolons.
    case tok_def:    HandleDefinition(); break;
    case tok_extern: HandleExtern(); break;
    default:         HandleTopLevelExpression(); break;
    }
  }
}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
  // Install standard binary operators.
  // 1 is lowest precedence.
  BinopPrecedence['<'] = 10;
  BinopPrecedence['+'] = 20;
  BinopPrecedence['-'] = 20;
  BinopPrecedence['*'] = 40;  // highest.

  // Prime the first token.
  fprintf(stderr, "ready> ");
  getNextToken();

  // Run the main "interpreter loop" now.
  MainLoop();

  return 0;
}